Sirtuin 1 (SIRT1) is involved in both aging and circadian-clock regulation, yet the link between the two processes in relation to SIRT1 function is not clear. Using Sirt1-deficient mice, we found that Sirt1 and Period 2 (Per2) constitute a reciprocal negative regulation loop that plays important roles in modulating hepatic circadian rhythmicity and aging. Sirt1-deficient mice exhibited profound premature aging and enhanced acetylation of histone H4 on lysine16 (H4K16) in the promoter of Per2, the latter of which leads to its overexpression; in turn, Per2 suppresses Sirt1 transcription through binding to the Sirt1 promoter at the Clock/Bmal1 site. This negative reciprocal relationship between SIRT1 and PER2 was also observed in human hepatocytes. We further demonstrated that the absence of Sirt1 or the ectopic overexpression of Per2 in the liver resulted in a dysregulated pace of the circadian rhythm. The similar circadian rhythm was also observed in aged wild type mice. The interplay between Sirt1 and Per2 modulates aging gene expression and circadian-clock maintenance.
Negative reciprocal regulation between Sirt1 and Per2 modulates the circadian clock and aging.
Age, Specimen part
View SamplesSkin and bladder epithelia form effective permeability barriers through the activation of distinct differentiation gene programs. Employing a genome-wide gene expression study, we identified transcription regulators whose expression correlates highly with that of differentiation markers both in bladder and skin, including the Grainyhead factor Get1/Grhl3, already known to be important for epidermal barrier formation. In the bladder, Get1 is most highly expressed in the differentiated umbrella cells and its mutation in mice leads to a defective bladder epithelial barrier formation due to failure of apical membrane specialization. Genes encoding components of the specialized urothelial membrane, the uroplakins, were downregulated in Get1-/- mice. At least one of these genes, Uroplakin II, is a direct target of Get1. The urothelial-specific activation of the Uroplakin II gene is due to selective binding of Get1 to the Uroplakin II promoter in urothelial cells, most likely regulated by histone modifications. These results demonstrate a key role for Get1 in urothelial differentiation and barrier formation.
The epidermal differentiation-associated Grainyhead gene Get1/Grhl3 also regulates urothelial differentiation.
Specimen part
View SamplesSkin and bladder epithelia form effective permeability barriers through the activation of distinct differentiation gene programs. Employing a genome-wide gene expression study, we identified transcription regulators whose expression correlates highly with that of differentiation markers both in bladder and skin, including the Grainyhead factor Get1/Grhl3, already known to be important for epidermal barrier formation. In the bladder, Get1 is most highly expressed in the differentiated umbrella cells and its mutation in mice leads to a defective bladder epithelial barrier formation due to failure of apical membrane specialization. Genes encoding components of the specialized urothelial membrane, the uroplakins, were downregulated in Get1-/- mice. At least one of these genes, Uroplakin II, is a direct target of Get1. The urothelial-specific activation of the Uroplakin II gene is due to selective binding of Get1 to the Uroplakin II promoter in urothelial cells, most likely regulated by histone modifications. These results demonstrate a key role for Get1 in urothelial differentiation and barrier formation.
The epidermal differentiation-associated Grainyhead gene Get1/Grhl3 also regulates urothelial differentiation.
Specimen part
View SamplesBackground: MicroRNAs (miRNAs) are a family of small, non-coding single-stranded RNA molecules involved in post-transcriptional regulation of gene expression. As such, they are believed to play a role in regulating the step-wise changes in gene expression patterns that occur during cell fate specification of multipotent stem cells. Here, we have studied whether terminal differentiation of C2C12 myoblasts is indeed controlled by lineage-specific changes in miRNA expression.
MicroRNA miR-378 promotes BMP2-induced osteogenic differentiation of mesenchymal progenitor cells.
Cell line
View SamplesIn this study that was specifically designed to identify early stages of glaucoma in DBA/2J mice, we used genome-wide expression profiling and a series of computational methods. Our methods successfully subdivided eyes with no detectable glaucoma by conventional assays into molecularly defined stages of disease. These stages represent a temporally ordered sequence of glaucoma states. Using an array of tools, we then determined networks and biological processes that are altered at these early stages. Our strategy proved very sensitive, suggesting that similar approaches will be valuable for uncovering early processes in other complex, later-onset diseases. Early changes included upregulation of both the complement cascade and endothelin system, and so we tested the therapeutic value of separately inhibiting them. Mice with a mutation in the complement component 1a gene (C1qa) were robustly protected from glaucoma with the protection being among the greatest reported. Similarly, inhibition of the endothelin system was strongly protective. Since EDN2 is potently vasoconstrictive and was produced by microglial/macrophages, our data provide a novel link between these cell types and vascular dysfunction in glaucoma. Targeting early events such as the upregulation of the complement and endothelin pathways may provide effective new treatments for human glaucoma.
Molecular clustering identifies complement and endothelin induction as early events in a mouse model of glaucoma.
Sex, Age, Specimen part
View SamplesThe skin interfollicular epidermis (IFE) is the first barrier against the external environment and its maintenance is critical for survival. Two seemingly opposite theories have been proposed to explain IFE homeostasis. One posits that IFE is maintained by a long-lived slow-cycling stem cell (SC) population that give rise to short-lived transit-amplifying (TA) cell progeny, while the other suggests that homeostasis is achieved by a single committed progenitor (CP) that balances stochastic fate. Here, we probed the cellular heterogeneity within the IFE using two different inducible CREER targeting IFE progenitors. Quantitative analysis of clonal fate data and proliferation dynamics demonstrate the existence of two distinct proliferative cell compartments composed of slow-cycling SC and CP, both of which undergo population asymmetric self-renewal. However, following wounding, only SCs contribute substantially to the repair and long-term regeneration of the tissue, while CP cells make a minimal and transient contribution.
Distinct contribution of stem and progenitor cells to epidermal maintenance.
Specimen part
View SamplesHere, we show that functional loss of a single gene is sufficient to confer constitutive milk protein production and protection against mammary tumor formation. Caveolin-3 (Cav-3), a muscle-specific caveolin-related gene, is highly expressed in striated and smooth muscle cells. We demonstrate that Cav-3 is also expressed in myoepithelial cells within the mammary gland. To determine if genetic ablation of Cav-3 expression affects adult mammary gland development, we next studied the phenotype(s) of Cav-3 (-/-) null mice. Interestingly, detailed analysis of Cav-3 (-/-) virgin mammary glands shows dramatic increases in ductal thickness, side-branching, and the development of extensive lobulo-alveolar hyperplasia, akin to the changes normally observed during pregnancy and lactation. Analysis by genome-wide expression profiling reveals the upregulation of gene transcripts associated with pregnancy/lactation, mammary stem cells, and human breast cancers, consistent with a constitutive lactogenic phenotype. The expression levels of three key transcriptional regulators of lactation, namely Elf5, Stat5a, and c-Myc are also significantly elevated. Experiments with pregnant mice directly show that Cav-3 (-/-) mice undergo precocious lactation. Finally, using orthotopic implantation of a transformed mammary cell line (known as Met-1), we demonstrate that virgin Cav-3 (-/-) mice are dramatically protected against mammary tumor formation. Interestingly, Cav-3 (+/-) mice also show similar protection, indicating that even reductions in Cav-3 levels are sufficient to render these mice resistant to tumorigenesis. Thus, Cav-3 (-/-) mice are a novel preclinical model to study the protective effects of a constitutive lactogenic microenviroment on mammary tumor onset and progression. Our current studies have broad implications for using the lactogenic micro-environment as a paradigm to discover new therapies for the prevention and/or treatment of human breast cancers. Most importantly, a lactation-based therapeutic strategy would provide a more natural and nontoxic approach to the development of novel anti-cancer therapies.
Loss of caveolin-3 induces a lactogenic microenvironment that is protective against mammary tumor formation.
No sample metadata fields
View Samples