Exosomes are small extracellular nano-vesicles of endocytic origin that mediate different signals between cells, by surface interactions and by shuttling of functional RNA from one cell to another. In this study, we show that exosomes, produced by mouse mast cells exposed to oxidative stress, change their mRNA content and also that these exosomes can influence the response of other cells to oxidative stress by providing recipient cells with a resistance against oxidative stress. Finally, we also show that UV-light affect the biological functions associated with exosomes released under oxidative stress. These results argue that exosomal shuttle of RNA is involved in cell-to-cell communication, by influencing the response of recipient cells to an external stimulus.
Exosomes communicate protective messages during oxidative stress; possible role of exosomal shuttle RNA.
Specimen part, Cell line
View SamplesWallerian degeneration (WD) involves the fragmentation of axonal segments disconnected from their cell bodies, segmentation of the myelin sheath, and removal of debris by Schwann cells and immune cells. The removal and downregulation of myelin-associated inhibitors of axonal regeneration and synthesis of growth factors by these two cell types are critical responses to successful nerve repair. Here, we analyzed the transcriptome of the sciatic nerve of mice carrying the Wallerian degeneration slow (WldS) mutant gene, a gene that confers axonal protection in the distal stump after injury, therefore causing significant delays in WD, neuroinflammation, and axonal regeneration.
Transcriptional profiling of the injured sciatic nerve of mice carrying the Wld(S) mutant gene: identification of genes involved in neuroprotection, neuroinflammation, and nerve regeneration.
Specimen part, Time
View SamplesPURPOSE: Hyperoxia is toxic to photoreceptors, and this toxicity may be important in the progress of retinal dystrophies. This microarray study examines gene expression induced in the C57BL/6J mouse retina by hyperoxia over the 14-day period during which photoreceptors first resist, then succumb to, hyperoxia. METHODS: Young adult C57BL/6J mice were exposed to hyperoxia (75% oxygen) for up to 14 days. On day 0 (control), day 3, day 7, and day 14, retinal RNA was extracted and processed on Affymetrix GeneChip Mouse Genome 430 2.0 arrays. Microarray data were analyzed using GCOS Version 1.4 and GeneSpring Version 7.3.1. RESULTS: The overall numbers of hyperoxia-regulated genes increased monotonically with exposure. Within that increase, however, a distinctive temporal pattern was apparent. At 3 days exposure, there was prominent upregulation of genes associated with neuroprotection. By day 14, these early-responsive genes were downregulated, and genes related to cell death were strongly expressed. At day 7, the regulation of these genes was mixed, indicating a possible transition period from stability at day 3 to degeneration at day 14. CONCLUSIONS: Microarray analysis of the response of the retina to prolonged hyperoxia demonstrated a temporal pattern involving early neuroprotection and later cell death, and provided insight into the mechanisms involved in the two phases of response. As hyperoxia is a consistent feature of the late stages of photoreceptor degenerations, understanding the mechanisms of oxygen toxicity may be important therapeutically.
Gene regulation induced in the C57BL/6J mouse retina by hyperoxia: a temporal microarray study.
Specimen part
View SamplesSle2c1 is an NZM2410-derived lupus susceptibility locus that induces an expansion of the B1a cell compartment. B1a cells have a repertoire enriched for autoreactivity, and an expansion of this B cell subset occurs in several mouse models of lupus. Here we showed that expression of Sle2c1 enhances NZB cellular phenotypes that have been associated with autoimmune pathogenesis. A combination of genetic mapping and candidate gene analysis presents Cdkn2c, a gene encoding for cyclin kinase inhibitor p18INK4c (p18), as the top candidate gene for inducing the Slec2c1 associated expansion of B1a cells. A novel SNP in the Cdkn2c promoter is associated with a significantly reduced Cdkn2c expression in the splenic B cells and B1a cells from Sle2c1-carrying mice, which leads to defective G1 cell cycle arrest in splenic B cells and increased proliferation of Pc B1a cells. As cell cycle is differentially regulated in B1a and B2 cells, these results suggest that Cdkn2c play a critical role in B1a cell self renewal, and that its impaired expression leads to an accumulation of these cells with high autoreactive potential.
Cyclin-dependent kinase inhibitor Cdkn2c regulates B cell homeostasis and function in the NZM2410-derived murine lupus susceptibility locus Sle2c1.
Specimen part
View SamplesWe characterized gene expression changes in the developing mouse liver at gestational days (GD) 11.5, 12.5, 13.5, 14.5, 16.5, and 19.5 and in the neonate (postnatal day (PND) 7 and 30) using full-genome microarrays and compared these changes to that in the adult liver. The fetal liver, and to a lesser extent the neonatal liver, exhibited dramatic differences in gene expression compared to adults. Canonical pathway analysis of the fetal liver signature demonstrated increases in functions important in cell replication and DNA fidelity whereas most metabolic pathways of intermediary metabolism were suppressed. Comparison of the dataset to a number of previously published datasets revealed 1) a striking similarity between the fetal liver and that of the pancreas in both mice and humans, 2) a nucleated erythrocyte signature in the fetus and 3) suppression of most xenobiotic metabolism genes throughout development, except a number of transporters associated with expression in hematopoietic cells.
Transcriptional ontogeny of the developing liver.
Specimen part
View SamplesTo characterize the effect of menthol on macrophages, comprehensive microarray analysis was performed in RAW 264.7 macrophage.
Menthol, a unique urinary volatile compound, is associated with chronic inflammation in interstitial cystitis.
Cell line, Treatment
View SamplesDuring mammalian kidney development, mesenchymal nephron progenitors (cap mesenchyme) differentiate into the epithelial cells that go on to form the nephron. Although differentiation of nephron progenitors is triggered by activation of Wnt/b-catenin signaling, constitutive activation of Wnt/b-catenin signaling blocks epithelialization of nephron progenitors. Full epithelialization of nephron progenitors requires transient activation of Wnt/b-catenin signaling. We performed transcriptional profiling of nephron progenitors responding to constitutive or transient activation of Wnt/b-catenin signaling.
Six2 and Wnt regulate self-renewal and commitment of nephron progenitors through shared gene regulatory networks.
No sample metadata fields
View SamplesThe Rift Valley Fever (RVF) is an arthropod-borne disease present in several countries of Africa and Middle East. It is caused by RVF virus which can infect both humans and animals. In humans, it leads to various manifestations including hepatitis, encephalitis and death, while in domestic animals it usually causes miscarriage in pregnant females and it is often fatal for the newborn. Not all people or animal infected by the virus present the same disease. Some patients exhibit unapparent or moderate febrile reactions, while others develop severe symptoms. This observation suggests that host genetic factors play a role in controlling the outcome of infection. In this work, we compare the response of two different inbred strains of mice, MBT/Pas and BALB/cByJ, to infection with RVF virus. These strains exhibit different profiles of susceptibility to RVF virus infection. Indeed, MBT/Pas mice rapidly develop high viraemia and die soon after infection, while BALB/cByJ mice have a lower viraemia and die later. Interestingly, mouse embryonic fibroblasts (MEFs) obtained from MBT/Pas foetuses allows higher viral production than BALB/cByJ MEFs.
A new mouse model reveals a critical role for host innate immunity in resistance to Rift Valley fever.
Specimen part
View SamplesPofut1 is an essential gene that glycosylates proteins containing EGF-like repeats, including Notch Receptors (NotchRs). Work in mice and in Drosophila has shown that O-fucosylation by Pofut1 is required for NotchR ligands to bind to and activate NotchRs. As such, Pofut1 deletion in skeletal myofibers allows for an analysis of potential functions and molecular changes of Pofut1 in skeletal muscle that derive from its expression in skeletal myofibers. In this study we compared gene expression profiles between quadriceps muscles in mice where Protein O-fucosyltransferase 1 (Pofut1) was deleted specifically in skeletal myofibers via use of a human skeletal alpha actin Cre transgene (Scre) and a loxP flanked Pofut1 gene (SCreFF) and mice which bore the only the Scre transgene but did not have floxed Pofut1 alleles (SCre++).
Deletion of <i>Pofut1</i> in Mouse Skeletal Myofibers Induces Muscle Aging-Related Phenotypes in <i>cis</i> and in <i>trans</i>.
Age, Specimen part
View SamplesNeuroblastoma, the most common extracranial pediatric solid tumor, is responsible for 15% of all childhood cancer deaths. Patients frequently present at diagnosis with metastatic disease, particularly to the bone marrow. Advances in therapy and understanding of the metastatic process have been limited due in part, to the lack of animal models harboring bone marrow disease. The widely employed transgenic model, the TH-MYCN mouse, exhibits limited metastasis to this site. Here we establish the first genetic immunocompetent mouse model for metastatic neuroblastoma with enhanced secondary tumors in the bone marrow. This model recapitulates two frequent alterations in metastatic neuroblasoma, over-expression of MYCN and loss of caspase-8 expression. In this model, the mouse caspase-8 gene was deleted in neural crest lineage cells by crossing a TH-Cre transgenic mouse with a caspase-8 conditional knockout mouse. This mouse was then crossed with the neuroblastoma prone TH-MYCN mouse. While over-expression of MYCN by itself rarely caused bone marrow metastasis (5% average incidence), combining MYCN overexpression and caspase-8 deletion significantly increased bone marrow metastasis (37% average incidence). Loss of caspase-8 expression did not alter the site, incidence, or latency of the primary tumors. However, secondary tumors were detected in the bone marrow of these mice as early as week 9-10. The mouse model described in this work is a valuable tool to enhance our understanding of metastatic neuroblastoma and treatment options and underscores the role of caspase-8 in neuroblastoma progression.
Th-MYCN mice with caspase-8 deficiency develop advanced neuroblastoma with bone marrow metastasis.
Specimen part
View Samples