Proteinases play a pivotal role in wound healing by degrading molecular barriers, regulating cell-matrix interactions and availability of bioactive molecules. Matrix metalloproteinase-13 (MMP-13, collagenase-3) is a wide spectrum proteinase. Its expression and function is linked to the growth and invasion of many epithelial cancers such as squamous cell carcinoma. Moreover, the physiologic expression of MMP-13 is associated e.g. to scarless healing of human fetal skin and adult gingival wounds. While MMP-13 is not found in the normally healing skin wounds in human adults, it is expressed in mouse skin during wound healing. Thus, mouse wound healing models can be utilized for studying the role of MMP-13 in the events of wound healing. As the processes such as the migration and proliferation of keratinocytes, angiogenesis, inflammation and activation of fibroblasts are components of wound repair as well as of cancer, many results received from wound healing studies are also adaptable to cancer research.
MMP-13 regulates growth of wound granulation tissue and modulates gene expression signatures involved in inflammation, proteolysis, and cell viability.
Time
View SamplesThe spatial organization of DNA in the cell nucleus is an emerging key contributor to genomic function. We have developed 4C technology, or 3C-on-chip, which allows for an unbiased genome-wide search for DNA loci that contact a given locus in the nuclear space. We demonstrate here that active and inactive genes are engaged in many long-range intrachromosomal interactions and can also form interchromosomal contacts. The active b-globin locus in fetal liver contacts mostly transcribed, but not necessarily tissue-specific, loci elsewhere on chromosome 7, while the inactive locus in fetal brain contacts different, transcriptionally silent, loci. A housekeeping gene in a gene dense region on chromosome 8 forms long-range contacts predominantly with other active gene clusters, both in cis and in trans, and many of these intra- and interchromosomal interactions are conserved between the tissues analyzed. Our data demonstrate that chromosomes fold into areas of active chromatin and areas of inactive chromatin and establish 4C technology as a powerful tool to study nuclear architecture.
Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C).
Specimen part
View SamplesMammalian genomes contain numerous DNA elements with potential transcription regulatory function but unknown target genes. We used transgenic, gain-of-function mice with an ectopic copy of the beta-globin locus control region (LCR) to better understand how regulatory elements dynamically search the genome for target genes. We find that the LCR samples a restricted nuclear sub-volume in which it forms preferential contacts with genes controlled by shared transcription factors. One contacted gene, betah1, located on another chromosome, is upregulated, providing genetic demonstration that mammalian enhancers can function between chromosomes. Upregulation is not pan-cellular but confined to selected jackpot cells significantly enriched for inter-chromosomal LCR-betah1 interactions. This implies that long-range DNA contacts are relatively stable and cell-specific and, when functional, cause variegated expression. We refer to this as spatial effect variegation (SEV). The data provide a dynamic and mechanistic framework for enhancer action, important for assigning function to the one- and three-dimensional structure of DNA.
Variegated gene expression caused by cell-specific long-range DNA interactions.
Specimen part, Disease
View Samples