The purpose of this study was to analyze the genomic signatures and profiles of skin from ichthyosis (various subtypes) vs. healthy patients. The analysis strategy was to study differentially expressed genes common to the ichthyosis shared phenotype, as well as individual ichthyosis subtypes, and compare and contrast to the genomic profiles of atopic dermatitis and psoriasis.
Ichthyosis molecular fingerprinting shows profound T<sub>H</sub>17 skewing and a unique barrier genomic signature.
Age, Specimen part, Disease
View SamplesSarm-deficient mice are protected from VSV encephalitis and death. Microarray was done to examine genes contributing to this phenotype
No associated publication
Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Polycomb repressive complex 2 (PRC2) silences genes responsible for neurodegeneration.
Age, Specimen part
View SamplesCocaine-mediated repression of the histone methyltransferase (HMT) G9a has recently been implicated in transcriptional, morphological, and behavioral responses to chronic cocaine administration. Here, using a ribosomal affinity purification approach, we find that G9a repression by cocaine occurs in both Drd1 (striatonigral)- and Drd2 (striatopallidal)-expressing medium spiny neurons (MSNs). Conditional knockout and overexpression of G9a within these distinct cell types, however, reveals divergent behavioral phenotypes in response to repeated cocaine treatment. Our studies further indicate that such developmental deletion of G9a selectively in Drd2 neurons results in the unsilencing of transcriptional programs normally specific to striatonigral neurons, and the acquisition of Drd1-associated projection and electrophysiological properties. This partial striatopallidal to striatonigral switching phenotype in mice indicates a novel role for G9a in contributing to neuronal subtype identity, and suggests a critical function for cell-type specific histone methylation patterns in the regulation of behavioral responses to environmental stimuli.
G9a influences neuronal subtype specification in striatum.
Sex, Specimen part
View SamplesStudies investigating the causes of autism spectrum disorder (ASD) point to genetic as well as epigenetic mechanisms of the disease. Identification of epigenetic processes that contribute to ASD development and progression is of major importance and may lead to the development of novel therapeutic strategies. Here we identify the bromodomain and extra-terminal domain containing transcriptional regulators (BETs) as epigenetic drivers of an ASD-like disorder in mice. We found that the pharmacological suppression of the BET proteins by a novel, highly selective and brain-permeable inhibitor, I-BET858, leads to selective suppression of neuronal gene expression followed by the development of an autism-like syndrome in mice. Many of the I-BET858 affected genes have been linked to ASD in humans thus suggesting the key role of the BET-controlled gene network in ASD. Our studies also suggest that environmental factors controlling BET proteins or their target genes may contribute to the epigenetic mechanism of ASD.
Autism-like syndrome is induced by pharmacological suppression of BET proteins in young mice.
Specimen part
View SamplesNormal brain function critically depends on the interaction between highly specialized neurons that operate within anatomically and functionally distinct brain regions. The fidelity of neuronal specification is contingent upon the robustness of the transcriptional program that supports the neuron type-specific patterns of gene expression. Changes in neuron type-specific gene expression are commonly associated with neurodegenerative disorders including Huntingtons and Alzheimers disease. The neuronal specification is driven by gene expression programs that are established during early stages of neuronal development and remain in place in the adult brain. Here we show that the Polycomb repressive complex 2 (PRC2), which supports neuron specification during early differentiation, contributes to the suppression of the transcription program that can be detrimental for the adult neuron function. We show that PRC2 deficiency in adult striatal neurons and in cerebellar Purkinje cells impairs the maintenance of neuron-type specific gene expression. The deficiency in PRC2 has a direct impact on a selected group of genes that is dominated by self-regulating transcription factors normally suppressed in these neurons. The age-dependent progressive transcriptional changes in PRC2-deficient neurons are associated with impaired neuronal function and survival and lead to the development of fatal neurodegenerative disorders in mice.
Polycomb repressive complex 2 (PRC2) silences genes responsible for neurodegeneration.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Progression of human bronchioloalveolar carcinoma to invasive adenocarcinoma is modeled in a transgenic mouse model of K-ras-induced lung cancer by loss of the TGF-β type II receptor.
Sex, Specimen part
View SamplesWe used an integrated computational/experimental systems biology approach to identify upstream protein kinases that regulate gene expression changes in kidneys of HIV-1 transgenic mice (Tg26), which have significant tubulo-interstitial fibrosis (TIF) and glomerulosclerosis (GS). We identified the homeo-domain interacting protein kinase 2 (HIPK2) as a key regulator of TIF and GS. HIPK2 was upregulated in kidneys of Tg26 and patients with various kidney diseases. HIV infection increased the protein level of HIPK2 by promoting oxidative stress, which inhibited Siah1-mediated proteasomal degradation of HIPK2.
No associated publication
Sex, Specimen part, Cell line
View SamplesRecent data suggests that repression of the Type II TGF-B Receptor (Tgfr2) repression in human lung adenocarcinoma is important for progression from noninvasive to invasive adenocarcinoma. To test this hypothesis in a animal model of non-invasive lung cancer, we generated an inducible, lung specific Tgfbr2 knockout model in the oncogenic Kras mouse.
Progression of human bronchioloalveolar carcinoma to invasive adenocarcinoma is modeled in a transgenic mouse model of K-ras-induced lung cancer by loss of the TGF-β type II receptor.
Specimen part
View SamplesRecent data suggests that repression of the Type II TGF-B Receptor (Tgfr2) repression in human lung adenocarcinoma is important for progression from noninvasive to invasive adenocarcinoma. To test this hypothesis in a animal model of non-invasive lung cancer, we generated an inducible, lung specific Tgfbr2 knockout model in the oncogenic Kras mouse.
No associated publication
Specimen part
View Samples